Systems of higher-order initial-value problems

1. Convert this system of two $2^{\text {nd }}$-order IVPs into a system of four first-order IVPs

$$
\begin{aligned}
& x^{(2)}(t)=\sin (t)-2 y^{(1)}(t)-3 x(t) \\
& x(0)=6 \\
& x^{(1)}(0)=7 \\
& y^{(2)}(t)=\cos (t)-4 x^{(1)}(t)-5 y(t) \\
& y(0)=8 \\
& y^{(1)}(0)=9 \\
& \mathbf{w}(t)=\left(\begin{array}{c}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
x(t) \\
x^{(1)}(t) \\
y(t) \\
y^{(1)}(t)
\end{array}\right) \\
& \text { Answer: } \mathbf{w}^{(1)}(t)=\left(\begin{array}{c}
w_{1}(t) \\
\sin (t)-2 w_{3}(t)-3 w_{0}(t) \\
w_{3}(t) \\
\cos (t)-4 w_{1}(t)-5 w_{2}(t)
\end{array}\right) \\
& \mathbf{w}(0)=\left(\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right)
\end{aligned}
$$

2. Convert this system of two IVPs into a system of three first-order IVPs

$$
\begin{aligned}
& u^{(1)}(t)=-4 t u(t) v(t) \\
& u(0)=-3 \\
& v^{(2)}(t)=-7 t u(t)+v(t)-6 v^{(1)}(t) \\
& v(0)=5 \\
& v^{(1)}(0)=2 \\
& \mathbf{w}(t)=\left(\begin{array}{l}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)=\left(\begin{array}{c}
u(t) \\
v(t) \\
v^{(1)}(t)
\end{array}\right) \\
& \text { Answer: } \mathbf{w}^{(1)}(t)=\left(\begin{array}{c}
-4 t w_{0}(t) w_{1}(t) \\
w_{2}(t) \\
-7 t w_{0}(t)+w_{1}(t)-6 w_{2}(t)
\end{array}\right) \\
& \mathbf{w}(0)=\left(\begin{array}{r}
-3 \\
5 \\
2
\end{array}\right)
\end{aligned}
$$

3. Convert this system of two $3^{\text {rd }}$-order IVPs into a system of six first-order IVPs

$$
\begin{aligned}
& x^{(3)}(t)=t-5 x(t) y^{(2)}(t)+y^{(1)}(t) \\
& x(0)=6 \\
& x^{(1)}(0)=7 \\
& x^{(2)}(0)=-8 \\
& y^{(3)}(t)=\cos (t)-4 y(t) x^{(2)}(t)-x^{(1)}(t) \\
& y(0)=8 \\
& y^{(1)}(0)=9 \\
& y^{(2)}(0)=-3 \\
& \mathbf{w}(t)=\left(\begin{array}{c}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t) \\
w_{4}(t) \\
w_{5}(t)
\end{array}\right)=\left(\begin{array}{c}
x(t) \\
x^{(1)}(t) \\
x^{(2)}(t) \\
y(t) \\
y^{(1)}(t) \\
y^{(2)}(t)
\end{array}\right) \\
& \mathbf{w}^{(1)}(t)=\left(\begin{array}{c}
w_{1}(t) \\
w_{2}(t) \\
t-5 w_{0}(t) w_{5}(t)+w_{4}(t) \\
w_{4}(t) \\
w_{5}(t) \\
\cos (t)-4 w_{3}(t) w_{2}(t)-w_{1}(t)
\end{array}\right)
\end{aligned}
$$

4. How would you express the right-hand side of the ODE in Question 3 to a function in Matlab?

Answer:

$$
\begin{array}{r}
\gg f=@(t, w)([w(2) ; w(3) ; t-5 * w(1) * w(6)+w(5) ; w(5) ; w(6) ; \ldots \\
\cos (t)-4 * w(4) * w(3)-w(2)]) ;
\end{array}
$$

You must remember that in Matlab, vectors start at index 1, but for higher-order odes, it is often easier to understand if you represent the $k^{\text {th }}$ derivative of the function by $w_{k}(t)$.
5. For Question 3, if you were to approximate $\mathbf{w}\left(t_{k}\right)$ with \mathbf{w}_{k} where $t_{k}=t_{0}+k h$, at each step, you would have a 6 -dimensional vector. What do the entries of that 6 -dimensional vector represent?

Answer: \quad The first entry of the approximation \mathbf{w}_{k} would approximate $x\left(t_{k}\right)$.
The second entry of the approximation \mathbf{w}_{k} would approximate $x^{(1)}\left(t_{k}\right)$.
The third entry of the approximation \mathbf{w}_{k} would approximate $x^{(2)}\left(t_{k}\right)$.
The fourth entry of the approximation \mathbf{w}_{k} would approximate $y\left(t_{k}\right)$.
The fifth entry of the approximation \mathbf{w}_{k} would approximate $y^{(1)}\left(t_{k}\right)$.
The sixth entry of the approximation \mathbf{w}_{k} would approximate $y^{(2)}\left(t_{k}\right)$.
6. Suppose you had approximations to the solution as described in Question 6. Suppose you also wanted to approximate the solution on the interval $\left[t_{k}, t_{k+1}\right]$. Could you find two polynomials that matches the approximations of the function at t_{k} and t_{k+1} and also matches all three derivatives at each of the points?

Answer: In theory, yes, but you would have to use two splines, each of degree 7. There are eight constraints that are being described, and therefore you need a polynomial with eight unknowns; that is, a polynomial of degree seven. Given the approximation already has an error, a cubic spline is probably sufficient.

